Physics I PUC

Chapter-1: Physical World

RETAINED PORTION 1.1 What is physics?	DELETED PORTION
1.4 Fundamental forces in nature	1.2 Physics-scope and excitement 1.3 Physics, technology and society 1.5 Nature of physical laws (To be discussed as a part of Introduction and integrated with other topics)

Chapter-2: UNITS AND MEASUREMENTS

RETAINED PORTION	DELETED PORTION
2.1 Introduction	Nil
2.2 The international system of units	
2.3 Measurement of length	
2.4 Measurement of mass	
2.5 Measurement of time	
2.6 Accuracy, precision of instruments and	
errors in measurement	
2.7 Significant figures	
2.8 Dimensions of physical quantities 2.9 Dimensional formulae and	
2.9 Dimensional formulae and	
limensional equations	
10 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m	
2.10 Dimensional analysis and its	-
pplications	
ppheadons .	38 h

Chapter-3: Motion in a straight line

RETAINED PORTION 3.1 Introduction	DELETED PORTION	
3.2 Position, path length and displacement 3.3 Average velocity and average speed 3.4 Instantaneous velocity and speed 3.5 Acceleration	Frame of reference: Position-time graph, speed and velocity	
3.6 Kinematic equations for uniformly accelerated motion		
3.7 Relative velocity		

Chapter-4 MOTION IN A PLANE

RETAINED PORTION	DELETED PORTION
4.1 Introduction 4.2 Scalars and vectors 4.3 Multiplication of vectors by real numbers	Nil
4.4 Addition and subtraction of vectors – graphical method 4.5 Resolution of vectors 4.6 Vector addition – analytical method	

- 4.7 Motion in a plane
 4.8 Motion in a plane with constant acceleration
- 4.9 Relative velocity in two dimensions
- 4.10 Projectile motion
- 4.11 Uniform circular motion

Chapter-5 Laws of Motion

RETAINED PORTION	, DELETED PORTION
5.1 Introduction 5.7 Conservation of momentum 5.8 Equilibrium of a particle 5.9 Common forces in mechanics	5.2 Intuitive concept of force, 5.3 Inertia, 5.4 Newton's first law of motion; momentum
5.10 Circular motion 5.11 Solving problems in mechanics	5.5 Newton's second law of motion; impulse; 5.6 Newton's third law of motion

Chapter 6 Work, Power, Energy

RETAINED PORTION	DELETED PORTIC	ANI	
6.1 Introduction	Nil DELETED FORTIC	/IV	
6.2 Notions of work and kinetic energy:	· ·		300
The work energy theorem			
6.3 Work		2	
6.4 Kinetic energy			
6.5 Work done by a variable force			
6.6 The work energy theorem		3	
for a variable force		20	
5.7 The concept of potential energy		٠	
5.8 The conservation of mechanical energy	7 Note:		
6.9 The potential energy of a spring	£	51	
5.10 Various forms of energy:			
he law of conservation of energy	(20)		220
5.11 Power			
5.12 Collisions		<u> </u>	÷

Chapter-7 System of Particles and Rotational Motion

	RETAINED PORTION	DELETED PORTION
7.4 Linear 7.5 Vector 7.6 Angul linear	e of mass on of centre of mass or momentum of a system of particles or product of two vectors or velocity and its relation with	7.10 Statement of parallel and perpendicular axes theorems and their applications
	e and angular momentum brium of a rigid body	·
7.9 Mome 7.11 Kiner fixed	nt of inertia matics of rotational motion about a	,

fixed axis		
7.13 Angular momentum in case of rotations about a fixed axis	**	
7.14 Rolling motion		39

Chapter-8 Gravitation

RETAINED PORTION	DELETED PORTION
 8.1 Introduction 8.3 Universal law of gravitation 8.4 The gravitational constant 8.6 Acceleration due to gravity below and above the surface of earth 	8.2 Kepler's laws of planetary motion 8.5 Acceleration due to gravity
8.7 Gravitational potential energy 8.8 Escape speed 8.9 Earth satellite 8.10 Energy of an orbiting satellite 8.11 Geostationary and polar satellites 8.12 Weightlessness	

Chapter-9 Mechanical Properties of Solids .-

RETAINED PORTION	- DELETED PORTION
 9.1 Introduction 9.3 Stress and strain 9.4 Hooke's law 9.5 Stress-strain curve 9.6 Elastic moduli 9.6.1 Young's modulus 9.6.2 Determination of young's modulus of the material wire 9.6.4 Bulk modulus 9.7 Applications of elastic behaviour of materials 	9.2 Elastic behaviour 9.6.3 Shear modulus of rigidity, 9.6.5 Poisson's ratio; 9.6.6 Elastic energy

Chapter 10 MECHANICAL PROPERTIES FLUID

RETAINED PORTION	DELETED PO	ORTION
10.1 Introduction	Nil	
10.2 Pressure		
10.3 Streamline flow		
10.4 Bernoulli's principle	# a	
10.5 Viscosity		
10.6 Surface tension	i	

Chapter-11 Thermal properties matter

RETAINED PORTION	DELETED PORTION
11.1 Introduction	11.2 Heat and temperature
- 11.3 Measurement of temperature	11.9 Heat transfer

11.4 Ideal-gas equation and	absolute	11.9.1 Conduction,		-
temperature .		11.9.2 convection	Gi Gi	- 1
11.5 Thermal expansion 11.6 Specific heat capacity		11.9.3 radiation		
11.0 Specific fleat capacity	0			- 1
11.7 Calorimetry]			- 1
11.8 Change of state	1			- 1
11.9.4 Black body radiation				i
11.9.5 Green house effect				
11.10 Newton's law of coolings				-

Chapter-12 Thermodynamics

RETAINED PORTION	DELETED PORTION
12.1 Introduction	12.9 Heat engine
12.2 Thermal equilibrium	12.10 Refrigerator
12.3 Zeroth law of thermodynamics	12.10 Todagorator
12.4 Heat, internal energy and work	
12.5 First law of thermodynamics	
12.6 Specific heat capacity	
12.7 Thermodynamic state variables and	
equation of state	
12.8 Thermodynamic processes	
12.11 Second law of thermodynamics	
12.12 Reversible and irreversible processes	
12.13 Carnot engine	

Chapter-13 KINETIC THEORY

RETAINED PORTION	DELET	ED PORTION	
13.1 Introduction	Nil		
13.2 Molecular nature of matter .		ž	
13.3 Behaviour of gases			
13.4 Kinetic theory of an ideal gas			
13.5 Law of equipartition of energy		王 芸	
13.6 Specific heat capacity		17 <u>2</u> 0	
13.7 Mean free path			

Chapter-14 OSCILLATION

RETAINED PORTION	DELETED	PORTION
14.1 Introduction 14.2Periodic and oscillatory motions 14.3 Simple harmonic motion	Nil .	4.
14.4 Simple harmonic motion and uniform circular motion		2
14.5 Velocity and acceleration in simple harmonic motion 14.6 Force law for simple harmonic motion	· .	2. 2. Y.
14.8 Some systems executing Simple		

Harmonic Motion		
14.9 Damped simple harmonic motion		\$
14.10 Forced oscillations and resonance	a	

Chapter-15 Waves

RETAINED PORTION	DELETED PORTION
15.1 Introduction	Fundamental mode and harmonics.
15.2 Transverse and longitudinal waves	and mannones.
15.3 Displacement relation in a progressive wave	15.8 Doppler effect.
15.4 The speed of a travelling wave	2
15.5 The principle of superposition of waves	
15.6 Reflection of waves (except fundamental mode and harmonics)	
15.7 Beats	

. I PUC Physics Practicals : Retained experiments

(Any eight experiments have to be conducted)

- Use of Vernier Callipers to
- (i) Measure diameter of small spherical/cylindrical body.
- -(ii) Measure the dimensions of given regular body of known mass and hence to determince its density and
- (iii) Measure the internal diameter and depth of a given cylindrical object like beaker /glass/calorimeter and hence to calculate its volume
- 2, Use of screw gauge to
- (a) Measure diameter of given wire.
- (b) Measure thickness of given sheet and
- (c) Determine volume of an irregular lamina
- 3. To determine the radius of curvature of given spherical surface by a spherometer
- 4. Measurement of the weight of given body (a wooden block) using the parallelogram law of vector addition
- Using a simple pendulum plot L T and L T² graphs, hence find the length of second's pendulum using appropriate graph
- 6. To study the relation between force of limiting friction and normal reaction and to find the coefficient of friction between surface of a moving block and that of a horizontal surface.
- 7. To find the force constant and effective mass of a helical spring by plotting T²-m graph using method of oscillation
- 8. To determine the surface tension of water by capillary rise method
- 9. To determine the coefficient of viscosity of a given liquid by measuring the terminal velocity of a spherical body
- To study the relationship between the temperature of a hot body and time by plotting a cooling curve

I PUC Physics Practicals: Deleted experiments

1. To determine mass of two different objects using a beam balance

 To find the downward force, along an inclined plane, acting on a roller due to gravity and study its relationship with the angle of inclination by plotting graph between force and sinθ

3. To determine Young's modulus of the material of a given wire by using Searle's apparatus

4. To study the variation in volume (V) with pressure (P) for a sample of air at constant temperature by plotting graphs between P and V. and between P and 1/V

5. (i) To study the relationship between frequency and length of a given wire under constant tension using a sonometer.

(ii) To study the relation between the length of a given wire and tension for constant frequency using sonometer

6. To determine the velocity of sound in air at room temperature using a resonance tube

7. To determine the specific heat capacity of a given (i) solid and (ii) a liquid by the method of mixtures

